Machine Learning Can Reduce Unnecessary Hospitalizations for Cancer Patients
Alexander Fuglkjær from Aalborg University presented promising results at ASH from a machine learning model designed to risk-stratify infection-related hospitalizations in cancer patients. The model identifies patients who can safely be sent home without risk of complications and shows potential for broader application across multiple cancer types.
Få tilgang
Hvis du er lege, sykepleier eller annen helsepersonell, kan du få tilgang til hele artikkelen ved å opprette en profil på BestPractice Nordic.
- Få tilgang
- Hvis du allerede har en profil: Logg in